CMIT 351 Project 1 Description

Intro:

ACME University IT wants to implement layer 2 segmentation to control broadcast domains and increase Local Area Network (LAN) performance.

Scenario:

IT has tasked you with creating a prototype of the new LAN. You need to document the prototype and identify what works as well as what does not work. The requirements you have specify a maximum number of switch (2), the number of virtual LANs (VLANs) as three, and some computers for endpoint testing.

Overview

Modern switches use VLANs to improve network performance by separating large Layer 2 broadcast domains into smaller ones. VLANs can also be used as a security measure by controlling which hosts can communicate. In general, VLANs make it easier to design a network to support the goals of an organization. VLAN trunks are used to span VLANs across multiple devices. Trunks allow the traffic from multiple VLANS to travel over a single link, while keeping the VLAN identification and segmentation intact.

Objectives

- Design a Local Area Network using switches and hosts (computers)
- Create basic switch configurations necessary for switch maintenance and operation
- Define Virtual LANs (VLANs) to enforce segmentation
- Implement necessary VLAN trunking to extend a VLAN across the LAN

Tools

- You will need a diagramming application such as draw.io or Visio to complete Part 1.
- You can reference the following uCertify labs for help in building the switch configurations: Modules 5, 6, 7, 8, 9, and 10.
- Note: access to physical or emulated Cisco devices is not required to complete this project. However, if you want to test, practice, or otherwise tinker you can get Cisco Packet Tracer (<u>https://skillsforall.com/course/getting-started-cisco-packet-tracer</u>) or GNS3 (<u>https://www.gns3.com/</u>)

Part 1: Design the Local Area Network

The work milestones for this part of the project are as follows:

- The LAN must consist of 2 switches and 3 computers.
- The two switches must be named **S1** and **S2**.
- The three computers must be named **PC-A**, **PC-B**, and **PC-C**.

Part 2: Create the basic switch configurations

Your network engineering lead has approved the LAN design. Now, the work to implement the design can begin. Your tasks are as follows:

2.1 Cable the network

- Connect PC-A to S1 on Ethernet Interface 6
- Connect S1 to S2 on Ethernet Interfaces 1
- Connect PC-B to S2 on Ethernet Interface 11
- Connect PC-C to S2 on Ethernet Interface 18

2.2. Configure the basic switch functions

Configure the basic functions in both S1 and S2 as follows:

- Set the enable secret to "class"
- Set the line con 0 password to "cisco"
- Set the line vty 0 15 password to "cisco"
- Set the MOTD to "Unauthorized access is strictly prohibited."
- Set logging to synchronous

2.3 Configure the computers

Configure the three computers as follows:

Name	IP Address	Subnet	Gateway
PC-A	192.168.10.3	255.255.255.0	192.168.10.1
PC-B	192.168.10.4	255.255.255.0	192.168.10.1
PC-C	192.168.20.3	255.255.255.0	192.168.20.1

2.4 Test and Validate Connectivity

Use *ping* to test connectivity between the computers. Detail your results in your project document, both what works and what doesn't work.

Part 3: Define the VLANs

3.1 You need to define three VLANs in both S1 and S2 as follows:

- VLAN 10 Students
- VLAN 20 Faculty
- VLAN 99 Management

3	2 Then,	define the	e following	interfaces	for the VLANs as:

Device	Interfaces	VLAN / IP Address
S1	6, 12 – 20, 22-23	VLAN 10
S1	11,21	VLAN 20
S1	VLAN 99	192.168.1.11 255.255.255.0
S2	11	VLAN 10
S2	18	VLAN 20
S2	VLAN 99	192.168.1.12 255.255.255.0

Part 4: Implement VLAN Trunking

4.1 Implement VLAN trunking on the switches as follows:

• Manually set interface 1 on S1 and S2 to trunk (<u>do not use</u> mode dynamic desirable)

4.2 Use *ping* to test connectivity between the <u>computers and switches</u>. Detail your results in your project document, both what works and what doesn't work.